
Introduction

Despite the prominence of AI and associated tech-
nologies in daily life, the usage of technology 

(especially technology involving AI) has been slow to 
advance in the context of educational research and 
within educational contexts, such as schools and colleges. 
It still has a reputation as the new kid on the block in the 

1
world of educational assessment.

This is unexpected in many ways because it makes sense 
to employ modern computer capacity to support AI and 
automated machine decision making when processing 
data like exam results. This was never more important 

than in 2020, when the COVID-19 epidemic caused all 
of England's national high-stakes testing systems to 
cease operations. The entire system had to be altered 
simply because students could no longer take paper-
based exams while seated in an exam room. The now-
famous exams catastrophe slowly came undone due to 

1,2
the reliance on outdated testing methods.   Assessing 
student learning in health professions education can 
be challenging due to the complexity of subject matter. 
In order to overcome these challenges, the program of 
assessment should be such that it incorporates a variety 
of assessment tools that can assess students competence 
holistically. Despite the many questions that arise around 
their usage, essay questions remain to be an important 
component of assessments in health professions educa-
tion because when used appropriately, essay questions 
can be an effective way of gauging student’s higher 
order thinking abilities and subject matter expertise. 
However, grading essay questions is difficult and prone 
to error. The observed score = true score + error is a 

3common formula used in assessment.  It suggests that 
when measuring a certain characteristic or trait (such 
as knowledge or skill level), the score that is observed 
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is made up of two components: the true score and the 
measurement error. True score refers to the actual level 
of the characteristic or trait that the individual possesses 
and measurement error refers to the inaccuracies or 
variations that can occur in the measurement process. 
Sources of error while grading essay questions include 
but are not limited to grader bias, grader subjectivity, 
lack of clarity in grading criteria, inadequate training 
of graders, time constraints and grading fatigue. In order 
to address some of these concerns, educational institu-
tions are turning towards artificial intelligence, more 
commonly referred to as automated grading, for grading 
exams. This technology uses natural language processing 
to analyze the content of the student's response, identify 
keywords and concepts, and match them to predetermined 
grading criteria. The use of automated grading may 
potentially reduce grading bias as it is expected to be 

4
more impartial.  The most recent advancements in edu-
cation technology, notably in the area of formative and 
summative assessment practise, now include automated 
scoring, including the usage of AI. Developers of AI 
make a variety of assertions about the validity and app-
lications of their technologies but they all generally agree 
that, it shortens the marking process, it eliminates or 
lessens human bias; and  it is at least as accurate and 

5,6dependable as human markers.  To check the accuracy 
of this claim, this research project was designed to (re) 
grade essay questions using ChatGPT.

Material and Methods 

This was a cross-sectional quantitative study 
conducted at University College of Medicine  and 
Dentistry from June till August 2023 and  compares 
the results of a facilitator's and ChatGPT's 
assessments of students' knowledge and abilities 
using a comparative research approach. The score of 
403 participants, who were taking the exit test for the 
Certificate in Health Professions Education, was 
initially graded by the facilitator and was re-scored by 
using the AI language model ChatGPT. Of these 
participants, 225 were female and 178 were male. 
Eighteen graded questions were chosen from the 
fifteen sets of exit tests. Using knowledge and skill 
about the pertinent topic, the facilitator scored the 
chosen question. The same set of questions was 
subjected to a rescoring process by ChatGPT. Kappa 
and correlation tests were used to compare the data 
obtained from the two assessment techniques. The 
correlation test was used to analyze the strength and 

direction of the link between the two assessment 
methods, and the kappa test was used to assess the 
degree of agreement between the two assessment 
techniques.7,8 This study has taken considerable care 
throughout the research process to preserve ethical 
norms. The institute's administrators were made 
aware of the study's objectives before its start, and the 
necessary consent was secured before processing any 
participant data. Also, the privacy and protection of 
the participants were guaranteed, and the 
confidentiality of all data was of the utmost 
significance. To ensure that the research is carried out 
responsibly and ethically, the study has also 
accounted for all ethical norms and concerns.

Results

A total of 403 students were included in the study. Of 
these, 178 (44.2%) were male and 225 (55.8%) were 
female. The ChatGPT score and examiner score 
consisted of 9 items. Items 1, 3, and 8 showed a 
negative correlation, while only 8 items showed a 
significant difference between the ChatGPT score 
and the examiner score. Items 2 and 4 showed a weak 
positive correlation and an insignificant difference 
between the ChatGPT score and the examiner score. 
Items 5, 6, and 9 showed a moderate positive 
correlation and difference between ChatGPT score an 
the examiner  and the examiner score. Only item 7 
showed a strong positive correlation, but there was an 
insignificant difference between the ChatGPT score 
and the examiner score. According to the Kappa test, 
questions 8 and 9 showed weak agreement between 
the ChatGPT and examiner scoring. Questions 2, 3, 
and 5 showed moderate agreement between the 
ChatGPT and examiner scoring, while questions 1, 4, 
6, and 7 showed strong kappa agreement between the 
ChatGPT and examiner scoring.

Discussion 

This study showed that the agreement between 
ChatGPT and human examiners' scoring varied for 
different items. Items 8 and 9 had weak agreement, 
suggesting that accurately measuring these items may 
be challenging. A study also found that the correlation 
between human and machine scoring was not superior for 

9
essay questions.  Literature suggests that automated 
scoring only focuses on language and grammar 
correction, while human raters can also provide 
personalized suggestions on the organization of the 
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structure and arguments. Additionally, another study 
found that the average score of the auto-mated 
scoring system was higher than that of human raters 
in evaluating Chinese college students' English 
writing. Questions 1, 4, 6, and 7 showed strong agreement, 
while questions 2, 3, and 5 showed moderate agreement. 
A previous study demonstrated that computers can 
mark short-answer questions as accurately as human 

10markers. Another study has demonstrated that computer 
marking based on language processing can identify 
critical words, analyze the context and hence issue 

11
predictable grades.  Furthermore, computer marking 
can provide more consistent results, especially when 
the time spent developing the question and response 
matching can be justified. This can also free up course 
tutors from the task of marking simple responses, enab-
ling them to focus on more judgment-intensive assess-

12ment tasks and supporting their students in other ways.  
In addition to this, by freeing up tutor’s time, computer 
marking can also assist them in providing timely and 

13
high quality feedback to students.  Literature remains 
conflicted on whether computer marking is superior to 
human marking as there is research-showing benefits 
of both. It is, however, difficult to ignore some of the 
advantages computer marking has to offer in terms of 
being efficient, cost effective, impartial and free from 

14,15
fatigue bias.  Even then, human marking will not be 

replaced by computer marking as humans pay a lot more 
attention to the social and communicative aspects of 

16writing which cannot be ignored in essay questions.  

Conclusion 

Artificial intelligence assisted tools such as ChatGPT 
is a  reality but its use in assessing essay questions 
would require  massive training data from expert 
assessors. Once appropriately trained, it may 
replicate assessment decisions across the full range of 
subject. Future studies should consider developing 
detailed rubrics for essay questions and then provide 
those rubrics to the examiners and as well as 
ChatGPT for assessing their validity and reliability.
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Table 3:  Comparison of Predictive Values (Bishop Score vs. Cervical Length)  

Question N
Correlation 

Value
p-Value

Correlation Status
Kappa Test 

Value
Kappa Significant 

value
Interpretation
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